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Installation

[image: ]
 [https://travis-ci.com/uber/bayesmark]This project provides a benchmark framework to easily compare Bayesian optimization methods on real machine learning tasks.

This project is experimental and the APIs are not considered stable.

This Bayesian optimization (BO) benchmark framework requires a few easy steps for setup. It can be run either on a local machine (in serial) or prepare a commands file to run on a cluster as parallel experiments (dry run mode).

Only Python>=3.6 is officially supported, but older versions of Python likely work as well.

The core package itself can be installed with:

pip install bayesmark





However, to also require installation of all the “built in” optimizers for evaluation, run:

pip install bayesmark[optimizers]





It is also possible to use the same pinned dependencies we used in testing by installing from the repo.

Building an environment to run the included notebooks can be done with:

pip install bayesmark[notebooks]





Or, bayesmark[optimizers,notebooks] can be used.

A quick example of running the benchmark is here. The instructions are used to generate results as below:

[image: _images/940be9bb19c3ef1eedd9353479054f76dfd7f5b7.png]

Non-pip dependencies

To be able to install opentuner some system level (non-pip) dependencies must be installed. This can be done with:

sudo apt-get install libsqlite3-0
sudo apt-get install libsqlite3-dev





On Ubuntu, this results in:

> dpkg -l | grep libsqlite
ii  libsqlite3-0:amd64    3.11.0-1ubuntu1  amd64  SQLite 3 shared library
ii  libsqlite3-dev:amd64  3.11.0-1ubuntu1  amd64  SQLite 3 development files





The environment should now all be setup to run the BO benchmark.






Running

Now we can run each step of the experiments. First, we run all combinations and then run some quick commands to analyze the output.


Launch the experiments

The experiments are run using the experiment launcher, which has the following interface:

usage: bayesmark-launch [-h] [-dir DB_ROOT] [-odir OPTIMIZER_ROOT] [-v] [-u UUID]
                  [-dr DATA_ROOT] [-b DB] [-o OPTIMIZER [OPTIMIZER ...]]
                  [-d DATA [DATA ...]]
                  [-c [{DT,MLP-adam,MLP-sgd,RF,SVM,ada,kNN,lasso,linear} ...]]
                  [-m [{acc,mae,mse,nll} ...]] [-n N_CALLS]
                  [-p N_SUGGEST] [-r N_REPEAT] [-nj N_JOBS] [-ofile JOBS_FILE]





The arguments are:

-h, --help            show this help message and exit
-dir DB_ROOT, -db-root DB_ROOT
                      root directory for all benchmark experiments output
-odir OPTIMIZER_ROOT, --opt-root OPTIMIZER_ROOT
                      Directory with optimization wrappers
-v, --verbose         print the study logs to console
-u UUID, --uuid UUID  length 32 hex UUID for this experiment
-dr DATA_ROOT, --data-root DATA_ROOT
                      root directory for all custom csv files
-b DB, --db DB        database ID of this benchmark experiment
-o OPTIMIZER [OPTIMIZER ...], --opt OPTIMIZER [OPTIMIZER ...]
                      optimizers to use
-d DATA [DATA ...], --data DATA [DATA ...]
                      data sets to use
-c, --classifier [{DT,MLP-adam,MLP-sgd,RF,SVM,ada,kNN,lasso,linear} ...]
                      classifiers to use
-m, --metric [{acc,mae,mse,nll} ...]
                      scoring metric to use
-n N_CALLS, --calls N_CALLS
                      number of function evaluations
-p N_SUGGEST, --suggestions N_SUGGEST
                      number of suggestions to provide in parallel
-r N_REPEAT, --repeat N_REPEAT
                      number of repetitions of each study
-nj N_JOBS, --num-jobs N_JOBS
                      number of jobs to put in the dry run file, the default
                      0 value disables dry run (real run)
-ofile JOBS_FILE, --jobs-file JOBS_FILE
                      a jobs file with all commands to be run





The output files will be placed in [DB_ROOT]/[DBID]. If DBID is not specified, it will be a randomly created subdirectory with a new name to avoid overwriting previous experiments. The path to DBID is shown at the beginning of stdout when running bayesmark-launch. In general, let the launcher create and setup DBID unless you are appending to a previous experiment, in which case, specify the existing DBID.

The launcher’s sequence of commands can be accessed programmatically via experiment_launcher.gen_commands(). The individual experiments can be launched programmatically via experiment.run_sklearn_study().


Selecting the experiments

A list of optimizers, classifiers, data sets, and metrics can be listed using the -o/-c/-d/-m commands, respectively. If not specified, the program launches all possible options.




Selecting the optimizer

A few different open source optimizers have been included as an example and are considered the “built-in” optimizers. The original repos are shown in the Links.

The data argument -o allows a list containing the “built-in” optimizers:

"HyperOpt", "Nevergrad-OnePlusOne", "OpenTuner-BanditA", "OpenTuner-GA", "OpenTuner-GA-DE", "PySOT", "RandomSearch", "Scikit-GBRT-Hedge", "Scikit-GP-Hedge", "Scikit-GP-LCB"





or, one can specify a user-defined optimizer. The class containing an optimizer conforming to the API must be found in in the folder specified by --opt-root. Additionally, a configuration defining each optimizer must be defined in [OPT_ROOT]/config.json. The --opt-root and config.json may be omitted if only built-in optimizers are used.

Additional details for providing a new optimizer are found in adding a new optimizer.




Selecting the data set

By default, this benchmark uses the sklearn example data sets [https://scikit-learn.org/stable/datasets/index.html#toy-datasets] as the “built-in” data sets for use in ML model tuning problems.

The data argument -d allows a list containing the “built-in” data sets:

"breast", "digits", "iris", "wine", "boston", "diabetes"





or, it can refer to a custom csv file, which is the name of file in the folder specified by --data-root. It also follows the convention that regression data sets start with reg- and classification data sets start with clf-. For example, the classification data set in [DATA_ROOT]/clf-foo.csv is specified with -d clf-foo.

The csv file can be anything readable by pandas, but we assume the final column is the target and all other columns are features. The target column should be integer for classification data and float for regression. The features should float (or str for categorical variable columns). See bayesmark.data.load_data for more information.




Dry run for cluster jobs

It is also possible to do a “dry run” of the launcher by specifying a value for --num-jobs greater than zero. For example, if --num-jobs 50 is provided, a text file listing 50 commands to run is produced, with one command (job) per line. This is useful when preparing a list of commands to run later on a cluster.

A dry run will generate a command file (e.g., jobs.txt) like the following (with a meta-data header). Each line corresponds to a command that can be used as a job on a different worker:

# running: {'--uuid': None, '-db-root': '/foo', '--opt-root': '/example_opt_root', '--data-root': None, '--db': 'bo_example_folder', '--opt': ['RandomSearch', 'PySOT'], '--data': None, '--classifier': ['SVM', 'DT'], '--metric': None, '--calls': 15, '--suggestions': 1, '--repeat': 3, '--num-jobs': 50, '--jobs-file': '/jobs.txt', '--verbose': False, 'dry_run': True, 'rev': '9a14ef2', 'opt_rev': None}
# cmd: python bayesmark-launch -n 15 -r 3 -dir foo -o RandomSearch PySOT -c SVM DT -nj 50 -b bo_example_folder
job_e2b63a9_00 bayesmark-exp -c SVM -d diabetes -o PySOT -u 079a155f03095d2ba414a5d2cedde08c -m mse -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c SVM -d boston -o RandomSearch -u 400e4c0be8295ad59db22d9b5f31d153 -m mse -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c SVM -d digits -o RandomSearch -u fe73a2aa960a5e3f8d78bfc4bcf51428 -m acc -n 15 -p 1 -dir foo -b bo_example_folder
job_e2b63a9_01 bayesmark-exp -c DT -d diabetes -o PySOT -u db1d9297948554e096006c172a0486fb -m mse -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c SVM -d boston -o RandomSearch -u 7148f690ed6a543890639cc59db8320b -m mse -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c SVM -d breast -o PySOT -u 72c104ba1b6d5bb8a546b0064a7c52b1 -m nll -n 15 -p 1 -dir foo -b bo_example_folder
job_e2b63a9_02 bayesmark-exp -c SVM -d iris -o PySOT -u cc63b2c1e4315a9aac0f5f7b496bfb0f -m nll -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c DT -d breast -o RandomSearch -u aec62e1c8b5552e6b12836f0c59c1681 -m nll -n 15 -p 1 -dir foo -b bo_example_folder && bayesmark-exp -c DT -d digits -o RandomSearch -u 4d0a175d56105b6bb3055c3b62937b2d -m acc -n 15 -p 1 -dir foo -b bo_example_folder
...





This package does not have built in support for deploying these jobs on a cluster or cloud environment (.e.g., AWS).




The UUID argument

The UUID is a 32-char hex string used as a master random seed which we use to draw random seeds for the experiments. If UUID is not specified a version 4 UUID is generated. The used UUID is displayed at the beginning of stdout. In general, the UUID should not specified/re-used except for debugging because it violates the assumption that the experiment UUIDs are unique.






Aggregate results

Next to aggregate all the experiment files into combined (json) files we need to run the aggregation command:

usage: bayesmark-agg [-h] [-dir DB_ROOT] [-odir OPTIMIZER_ROOT] [-v] -b DB [-rv]





The arguments are:

-h, --help            show this help message and exit
-dir DB_ROOT, -db-root DB_ROOT
                      root directory for all benchmark experiments output
-odir OPTIMIZER_ROOT, --opt-root OPTIMIZER_ROOT
                      Directory with optimization wrappers
-v, --verbose         print the study logs to console
-b DB, --db DB        database ID of this benchmark experiment
-rv, --ravel          ravel all studies to store batch suggestions as if
                      they were serial





The DB_ROOT must match the folder from the launcher bayesmark-launch, and DBID must match that displayed from the launcher as well. The aggregate files are found in [DB_ROOT]/[DBID]/derived.

The result aggregation can be done programmatically via experiment_aggregate.concat_experiments().




Analyze and summarize results

Finally, to run a statistical analysis presenting a summary of the experiments we run

usage: bayesmark-anal [-h] [-dir DB_ROOT] [-odir OPTIMIZER_ROOT] [-v] -b DB





The arguments are:

-h, --help            show this help message and exit
-dir DB_ROOT, -db-root DB_ROOT
                      root directory for all benchmark experiments output
-odir OPTIMIZER_ROOT, --opt-root OPTIMIZER_ROOT
                      Directory with optimization wrappers
-v, --verbose         print the study logs to console
-b DB, --db DB        database ID of this benchmark experiment





The DB_ROOT must match the folder from the launcher bayesmark-launch, and DBID must match that displayed from the launcher as well. The aggregate files are found in [DB_ROOT]/[DBID]/derived.

The bayesmark-anal command looks for a baseline.json file in [DB_ROOT]/[DBID]/derived, which states the best possible and random search performance. If no such file is present, bayesmark-anal automatically calls bayesmark-baseline to build it. The baselines are inferred from the random search performance in the logs. The baseline values are considered fixed (not random) quantities when bayesmark-anal builds confidence intervals. Therefore, we allow the user to leave them fixed and do not rebuild them when bayesmark-anal is called if a baselines file is already present.

The result analysis can be done programmatically via experiment_analysis.compute_aggregates(), and the baseline computation via experiment_baseline.compute_baseline().

See How scoring works for more information on how the scores are computed and aggregated.




Example

After finishing the setup (environment) a small-scale serial can be run as follows:

> # setup
> DB_ROOT=./notebooks  # path/to/where/you/put/results
> DBID=bo_example_folder
> mkdir $DB_ROOT
> # experiments
> bayesmark-launch -n 15 -r 3 -dir $DB_ROOT -b $DBID -o RandomSearch PySOT -c SVM DT -v
Supply --uuid 3adc3182635e44ea96969d267591f034 to reproduce this run.
Supply --dbid bo_example_folder to append to this experiment or reproduce jobs file.
User must ensure equal reps of each optimizer for unbiased results
-c DT -d boston -o PySOT -u a1b287b450385ad09b2abd7582f404a2 -m mae -n 15 -p 1 -dir /notebooks -b bo_example_folder
-c DT -d boston -o PySOT -u 63746599ae3f5111a96942d930ba1898 -m mse -n 15 -p 1 -dir /notebooks -b bo_example_folder
-c DT -d boston -o RandomSearch -u 8ba16c880ef45b27ba0909199ab7aa8a -m mae -n 15 -p 1 -dir /notebooks -b bo_example_folder
...
0 failures of benchmark script after 144 studies.
done
> # aggregate
> bayesmark-agg -dir $DB_ROOT -b $DBID
> # analyze
> bayesmark-anal -dir $DB_ROOT -b $DBID -v
...
median score @ 15:
optimizer
PySOT_0.2.3_9b766b6           0.330404
RandomSearch_0.0.1_9b766b6    0.961829
mean score @ 15:
optimizer
PySOT_0.2.3_9b766b6           0.124262
RandomSearch_0.0.1_9b766b6    0.256422
normed mean score @ 15:
optimizer
PySOT_0.2.3_9b766b6           0.475775
RandomSearch_0.0.1_9b766b6    0.981787
done





The aggregate result files (i.e., summary.json) will now be available in $DB_ROOT/$DBID/derived. However, this will be high variance since it was from only 3 trials and only to 15 function evaluations.




Plotting and notebooks

Plotting the quantitative results found in $DB_ROOT/$DBID/derived can be done using the notebooks found in the notebooks/ folder of the git repository. The notebook plot_mean_score.ipynb generates plots for aggregate scores averaging over all problems. The notebook plot_test_case.ipynb generates plots for each test problem.

To use the notebooks, first copy over the notebooks/ folder from git repository.

To setup the kernel for running the notebooks use:

virtualenv bobm_ipynb --python=python3.6
source ./bobm_ipynb/bin/activate
pip install bayesmark[notebooks]
python -m ipykernel install --name=bobm_ipynb --user





Now, the notebooks for plotting can be run with the command jupyter notebook and selecting the kernel bobm_ipynb.

It is also possible to convert the notebooks to an HTML report at the command line using nbconvert. For example, use the command:

jupyter nbconvert --to html --execute notebooks/plot_mean_score.ipynb





The output file will be in ./notebooks/plot_mean_score.html. Here is an example export [https://github.com/uber/bayesmark/files/3699241/plot_mean_score.pdf]. See the nbconvert documentation page [https://nbconvert.readthedocs.io/en/latest/usage.html#supported-output-formats] for more output formats. By default, the notebooks look in ./notebooks/bo_example_folder/ for the summary.json from bayesmark-anal.

To run plot_test_case.ipynb use the command:

jupyter nbconvert --to html --execute notebooks/plot_test_case.ipynb --ExecutePreprocessor.timeout=600





The --ExecutePreprocessor.timeout=600 timeout increase is needed due to the large number of plots being generated. The output will be in ./notebooks/plot_test_case.html.






Adding a new optimizer

All optimizers in this benchmark are required to follow the interface specified of the AbstractOptimizer class in bayesmark.abstract_optimizer. In general, this requires creating a wrapper class around the new optimizer. The wrapper classes must all be placed in a folder referred to by the --opt-root argument. This folder must also contain the config.json folder.

The interface is simple, one must merely implement the suggest and observe functions. The suggest function generates new guesses for evaluating the function. Once evaluated, the function evaluations are passed to the observe function. The objective function is not evaluated by the optimizer class. The objective function is evaluated on outside and results are passed to observe. This is the correct setup for Bayesian optimization because:


	We can observe/try inputs that were never suggested


	We can ignore suggestions


	The objective function may not be something as simple as a Python function




So passing the function as an argument as is done in scipy.optimization is artificially restrictive.

The implementation of the wrapper will look like the following:

from bayesmark.abstract_optimizer import AbstractOptimizer
from bayesmark.experiment import experiment_main


class NewOptimizerName(AbstractOptimizer):
    # Used for determining the version number of package used
    primary_import = "name of import used e.g, opentuner"

    def __init__(self, api_config, optional_arg_foo=None, optional_arg_bar=None):
        """Build wrapper class to use optimizer in benchmark.

        Parameters
        ----------
        api_config : dict-like of dict-like
            Configuration of the optimization variables. See API description.
        """
        AbstractOptimizer.__init__(self, api_config)
        # Do whatever other setup is needed
        # ...

    def suggest(self, n_suggestions=1):
        """Get suggestion from the optimizer.

        Parameters
        ----------
        n_suggestions : int
            Desired number of parallel suggestions in the output

        Returns
        -------
        next_guess : list of dict
            List of `n_suggestions` suggestions to evaluate the objective
            function. Each suggestion is a dictionary where each key
            corresponds to a parameter being optimized.
        """
        # Do whatever is needed to get the parallel guesses
        # ...
        return x_guess

    def observe(self, X, y):
        """Feed an observation back.

        Parameters
        ----------
        X : list of dict-like
            Places where the objective function has already been evaluated.
            Each suggestion is a dictionary where each key corresponds to a
            parameter being optimized.
        y : array-like, shape (n,)
            Corresponding values where objective has been evaluated
        """
        # Update the model with new objective function observations
        # ...
        # No return statement needed


if __name__ == "__main__":
    # This is the entry point for experiments, so pass the class to experiment_main to use this optimizer.
    # This statement must be included in the wrapper class file:
    experiment_main(NewOptimizerName)





Depending on the API of the optimizer being wrapped, building this wrapper class may only or require a few lines of code, or be a total pain.


The config file

Note: A config file is now optional. If no config.json is provided, the experiment launcher will look for all folders with an optimizer.py in the --opt-root directory.

Each optimizer wrapper can have multiple configurations, which is each referred to as a different optimizer in the benchmark. For example, the JSON config file will have entries as follows:

{
    "OpenTuner-BanditA-New": [
        "opentuner_optimizer.py",
        {"techniques": ["AUCBanditMetaTechniqueA"]}
    ],
    "OpenTuner-GA-DE-New": [
        "opentuner_optimizer.py",
        {"techniques": ["PSO_GA_DE"]}
    ],
    "OpenTuner-GA-New": [
        "opentuner_optimizer.py",
        {"techniques": ["PSO_GA_Bandit"]}
    ]
}





Basically, the entries are "name_of_strategy": ["file_with_class", {kwargs_for_the_constructor}]. Here, OpenTuner-BanditA, OpenTuner-GA-DE, and OpenTuner-GA are all treated as different optimizers by the benchmark even though the all use the same class from opentuner_optimizer.py.

This config.json must be in the same folder as the optimizer classes (e.g., opentuner_optimizer.py).




Running with a new optimizer

To run the benchmarks using a new optimizer, simply provide its name (from config.json) in the -o list. The --opt-root argument must be specified in this case. For example, the launch command from the example becomes:

bayesmark-launch -n 15 -r 3 -dir $DB_ROOT -b $DBID -o RandomSearch PySOT-New -c SVM DT --opt-root ./example_opt_root -v





Here, we are using the example PySOT-New wrapper from the example_opt_root folder in the git repo. It is equivalent to the builtin PySOT, but gives an example of how to provide a new custom optimizer.






Contributing

The following instructions have been tested with Python 3.6.8 on Ubuntu (16.04.5 LTS).


Install in editable mode

First, define the variables for the paths we will use:

GIT=/path/to/where/you/put/repos
ENVS=/path/to/where/you/put/virtualenvs





Then clone the repo in your git directory $GIT:

cd $GIT
git clone https://github.com/uber/bayesmark.git





Inside your virtual environments folder $ENVS, make the environment:

cd $ENVS
virtualenv bayesmark --python=python3.6
source $ENVS/bayesmark/bin/activate





Now we can install the pip dependencies. Move back into your git directory and run

cd $GIT/bayesmark
pip install -r requirements/base.txt
pip install -r requirements/optimizers.txt
pip install -e .  # Install the benchmark itself





You may want to run pip install -U pip first if you have an old version of pip. The file optimizers.txt contains the dependencies for all the optimizers used in the benchmark. The analysis and aggregation programs can be run using only the requirements in base.txt.




Contributor tools

First, we need to setup some needed tools:

cd $ENVS
virtualenv bayesmark_tools --python=python3.6
source $ENVS/bayesmark_tools/bin/activate
pip install -r $GIT/bayesmark/requirements/tools.txt





To install the pre-commit hooks for contributing run (in the bayesmark_tools environment):

cd $GIT/bayesmark
pre-commit install





To rebuild the requirements, we can run:

cd $GIT/bayesmark
# Get py files from notebooks to analyze
jupyter nbconvert --to script notebooks/*.ipynb
# Generate the .in files (but pins to latest, which we might not want)
pipreqs bayesmark/ --ignore bayesmark/builtin_opt/ --savepath requirements/base.in
pipreqs test/ --savepath requirements/test.in
pipreqs bayesmark/builtin_opt/ --savepath requirements/optimizers.in
pipreqs notebooks/ --savepath requirements/ipynb.in
pipreqs docs/ --savepath requirements/docs.in
# Regenerate the .txt files from .in files
pip-compile-multi --no-upgrade








Generating the documentation

First setup the environment for building with Sphinx:

cd $ENVS
virtualenv bayesmark_docs --python=python3.6
source $ENVS/bayesmark_docs/bin/activate
pip install -r $GIT/bayesmark/requirements/docs.txt





Then we can do the build:

cd $GIT/bayesmark/docs
make all
open _build/html/index.html





Documentation will be available in all formats in Makefile. Use make html to only generate the HTML documentation.




Running the tests

The tests for this package can be run with:

cd $GIT/bayesmark
./test.sh





The script creates a conda environment using the requirements found in requirements/test.txt.

The test.sh script must be run from a clean git repo.

Or if we only want to run the unit tests and not check the adequacy of the requirements files, one can use

# Setup environment
cd $ENVS
virtualenv bayesmark_test --python=python3.6
source $ENVS/bayesmark_test/bin/activate
pip install -r $GIT/bayesmark/requirements/test.txt
pip install -e $GIT/bayesmark
# Now run tests
cd $GIT/bayesmark/
pytest test/ -s -v --hypothesis-seed=0 --disable-pytest-warnings --cov=bayesmark --cov-report html





A code coverage report will also be produced in $GIT/bayesmark/htmlcov/index.html.




Deployment

The wheel (tar ball) for deployment as a pip installable package can be built using the script:

cd $GIT/bayesmark/
./build_wheel.sh










Links

The source [https://github.com/uber/bayesmark] is hosted on GitHub.

The documentation [https://bayesmark.readthedocs.io/en/latest/] is hosted at Read the Docs.

Installable from PyPI [https://pypi.org/project/bayesmark/].

The builtin optimizers are wrappers on the following projects:


	HyperOpt [https://github.com/hyperopt/hyperopt]


	Nevergrad [https://github.com/facebookresearch/nevergrad]


	OpenTuner [https://github.com/jansel/opentuner]


	PySOT [https://github.com/dme65/pySOT]


	Scikit-optimize [https://github.com/scikit-optimize/scikit-optimize]







License

This project is licensed under the Apache 2 License - see the LICENSE file for details.





          

      

      

    

  

    
      
          
            
  
How scoring works

The scoring system is about aggregating the function evaluations of the optimizers. We represent \(F_{pmtn}\) as the function evaluation of objective function \(p\) (TEST_CASE) from the suggestion of method \(m\) (METHOD) at batch \(t\) (ITER) under repeated trial \(n\) (TRIAL). In the case of batch sizes greater than 1, \(F_{pmtn}\) is the minimum function evaluation across the suggestions in batch \(t\). The first transformation is that we consider the cumulative minimum over batches \(t\) as the performance of the optimizer on a particular trial:


\[S_{pmtn} = \textrm{cumm-min}_t F_{pmtn}\,.\]

All of the aggregate quantities described here are computed by experiment_analysis.compute_aggregates() (which is called by bayesmark-anal) in either the agg_result or summary xarray datasets. Additionally, the baseline performances are in the xarray dataset baseline_ds from experiment_baseline.compute_baseline(). The baseline dataset can be generated via the bayesmark-baseline command, but it is called automatically by bayesmark-anal if needed.


Median scores

The more robust, but less decision-theoretically appealing method for aggregation is to look at median scores. On a per problem basis we simply consider the median (agg_result[PERF_MED]):


\[\textrm{med-perf}_{pmt} = \textrm{median}_n \, S_{pmtn} \,.\]

However, this score is not very comparable across different problems as the objectives are all on different scales with possible different units. Therefore, we decide the normalized score (agg_result[NORMED_MED]) in a way that is invariant to linear transformation of the objective function:


\[\textrm{norm-med-perf}_{pmt} = \frac{\textrm{med-perf}_{pmt}  - \textrm{opt}_p}{\textrm{rand-med-perf}_{pt} - \textrm{opt}_p} \,,\]

where \(\textrm{opt}_p\) (baseline_ds[PERF_BEST]) is an estimate of the global minimum of objective function \(p\); and \(\textrm{rand-med-perf}_{pt}\) is the median performance of random search at batch \(t\) on objective function \(p\). This means that, on any objective, an optimizer has score 0 after converging to the global minimum; and random search performs as a straight line at 1 for all \(t\). Conceptually, the median random search performance (baseline_ds[PERF_MED]) is computed as:


\[\textrm{rand-med-perf}_{pt} = \textrm{median}_n \, S_{pmtn} \,,\]

with \(m=\) random search. However, every observation of \(F_{pmtn}\) is iid in the case of random search. There is no reason to break the samples apart into trials \(n\). Instead, we use the function quantiles.min_quantile_CI() to compute a more statistically efficient pooled estimator using the pooled random search samples over \(t\) and \(n\). This pooled method is a nonparametric estimator of the quantiles of the minimum over a batch of samples, which is distribution free.

To further aggregate the performance over all objectives for a single optimizer we can consider the median-of-medians (summary[PERF_MED]):


\[\textrm{med-perf}_{mt} = \textrm{median}_p \, \textrm{norm-med-perf}_{pmt} \,.\]

Combining scores across different problems is sensible here because we have transformed them all onto the same scale.




Mean scores

From a decision theoretical perspective it is more sensible to consider the mean (possible warped) score. The median score can hide a high percentage of runs that completely fail. However, when we look at the mean score we first take the clipped score with a baseline value:


\[S'_{pmtn} = \min(S_{pmtn}, \textrm{clip}_p) \,.\]

This is largely because there may be a non-zero probably of \(F = \infty\) (as in when the objective function crashes), which means that mean random search performance is infinite loss. We set \(\textrm{clip}_p\) (baseline_ds[PERF_CLIP]) to the median score after a single function evaluation, which is \(\textrm{rand-med-perf}_{p0}\) for a batch size of 1. The mean performance on a single problem (agg_result[PERF_MEAN]) then becomes:


\[\textrm{mean-perf}_{pmt} = \textrm{mean}_n \, S'_{pmtn} \,.\]

Which then becomes a normalized performance (agg_result[NORMED_MEAN]) of:


\[\textrm{norm-mean-perf}_{pmt} = \frac{\textrm{mean-perf}_{pmt}  - \textrm{opt}_p}{\textrm{clip}_p  - \textrm{opt}_p} \,.\]

Note there that the random search performance is only 1 at the first batch unlike for \(\textrm{norm-med-perf}_{pmt}\).

Again we can aggregate this into all objective function performance with (summary[PERF_MEAN]):


\[\textrm{mean-perf}_{mt} = \textrm{mean}_p \, \textrm{norm-mean-perf}_{pmt} \,,\]

which is a mean-of-means (or grand mean), which is much more sensible in general than a median-of-medians. We can again obtain the property of random search having a constant performance of 1 for all \(t\) using (summary[NORMED_MEAN]):


\[\textrm{norm-mean-perf}_{mt} = \frac{\textrm{mean-perf}_{mt}}{\textrm{rand-mean-perf}_{t}} \,,\]

where the random search baseline has been determined with the same sequence of equations as the other methods. These all collapse down to:


\[\textrm{rand-mean-perf}_{t} = \textrm{mean}_p \, \frac{\textrm{rand-mean-perf}_{pt} - \textrm{opt}_p}{\textrm{clip}_p  - \textrm{opt}_p} \,.\]

Conceptually, we compute this random search baseline (baseline_ds[PERF_MEAN]) as:


\[\textrm{rand-mean-perf}_{pt} = \textrm{mean}_n \, S'_{pmtn} \,,\]

with \(m=\) random search. However, because all function evaluations for random search are iid across \(t\), we can use a more statistically efficient pooled estimator expected_max.expected_min(), which is an unbiased distribution free estimator on the expected minimum of \(m\) samples from a distribution.

Note that \(\textrm{norm-mean-perf}_{mt}\) is, in aggregate, a linear transformation on the expected loss \(S'\). This makes it more justified in a decision theory framework than the median score. However, to view it as a linear transformation we are considering the values in baseline_ds to be fixed reference losses values and not the output from the experiment.




Error bars

The datasets agg_result and summary also compute error bars in the form of LB_ and UB_ variables. These error bars do not consider the random variation in the baseline quantities from baseline_ds like opt and clip. They are instead treated as fixed constant reference points. Therefore, they are computed by a different command bayesmark-baseline. The user can generate the baselines when they want, but since they are not considered a random quantity in the statistics they are not automatically generated from the experimental data (unless the baseline file derived/baseline.json is missing).

Additionally, the error bars on the grand mean (summary[PERF_MEAN]) are computed by simply using t-statistic based error bars on the individual means. Under a “random effects” model, this does not actually lose any statistical power. However, this is computing the mean on the loss over sampling from new problems under the “same distribution” of benchmark problems. These error bars will be wider than if we computed the error bars on the grand mean over this particular set of benchmark problems.







          

      

      

    

  

    
      
          
            
  
Code Overview


Data

Module to deal with all matters relating to loading example data sets, which we tune ML models to.


	
class bayesmark.data.ProblemType

	The different problem types we consider. Currently, just regression (reg) and classification (clf).






	
bayesmark.data.get_problem_type(dataset_name)

	Determine if this dataset is a regression of classification problem.


	Parameters

	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data set to use, must be key in DATA_LOADERS dict, or name of custom csv file.



	Returns

	problem_type – Enum to indicate if regression of classification data set.



	Return type

	ProblemType










	
bayesmark.data.load_data(dataset_name, data_root=None)

	Load a data set and return it in, pre-processed into numpy arrays.


	Parameters

	
	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data set to use, must be key in DATA_LOADERS dict, or name of custom csv file.


	data_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Root directory to look for all custom csv files. May be None for sklearn data sets.






	Returns

	
	data (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, d)) – The feature matrix of the data set. It will be float array.


	target (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – The target vector for the problem, which is int for classification and float for regression.


	problem_type (bayesmark.data.ProblemType) – Enum to indicate if regression of classification data set.

















Expected Max Estimation

Compute expected maximum or minimum from iid samples.


	
bayesmark.expected_max.expected_max(x, m)

	Compute unbiased estimator of expected max(x[1:m]) on a data set.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data set we would like expected max(x[1:m]) on.


	m (int or numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with dtype int) – This function is for estimating the expected maximum over m iid draws. Require m >= 1. This can be
broadcasted. If m > n, the weights will be nan, because there is no way to get unbiased estimate in that
case.






	Returns

	E_max_x – Unbiased estimate of mean max of m draws from distribution on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
bayesmark.expected_max.expected_min(x, m)

	Compute unbiased estimator of expected min(x[1:m]) on a data set.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data set we would like expected min(x[1:m]) on. Require len(x) >= 1.


	m (int or numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with dtype int) – This function is for estimating the expected minimum over m iid draws. Require m >= 1. This can be
broadcasted. If m > n, the weights will be nan, because there is no way to get unbiased estimate in that
case.






	Returns

	E_min_x – Unbiased estimate of mean min of m draws from distribution on x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
bayesmark.expected_max.get_expected_max_weights(n, m)

	Get the L-estimator weights for computing unbiased estimator of expected max(x[1:m]) on a data set.


	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of data points in data set len(x). Must be >= 1.


	m (int or numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with dtype int) – This function is for estimating the expected maximum over m iid draws. Require m >= 1. This can be
broadcasted. If m > n, the weights will be nan, because there is no way to get unbiased estimate in that
case.






	Returns

	pdf – The weights for L-estimator. Will be positive and sum to one.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], shape (n,)












Experiment Aggregation

Aggregate the results of many studies to prepare analysis.


	
bayesmark.experiment_aggregate.concat_experiments(all_experiments, ravel=False)

	Aggregate the Datasets from a series of experiments into combined Dataset.


	Parameters

	
	all_experiments (typing.Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable]) – Iterable (possible from a generator) with the Datasets from each experiment. Each item in all_experiments is
a pair containing (meta_data, data). See load_experiments for details on these variables,


	ravel (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, ravel all studies to store batch suggestions as if they were serial.






	Returns

	
	all_perf (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – DataArray containing all of the perf_da from the experiments. The meta-data from the experiments are included
as extra dimensions. all_perf has dimensions (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL). To convert the
uuid to a trial, there must be an equal number of repetition in the experiments for each TEST_CASE,
METHOD combination. Likewise, all of the experiments need an equal number of ITER and SUGGEST. If ravel
is true, then the SUGGEST is singleton.


	all_time (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – Dataset containing all of the time_ds from the experiments. The new dimensions are
(ITER, TEST_CASE, METHOD, TRIAL). It has the same variables as time_ds.


	all_suggest (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – DataArray containing all of the suggest_ds from the experiments. It has dimensions
(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL).


	all_sigs (dict(str, list(list(float)))) – Aggregate of all experiment signatures.















	
bayesmark.experiment_aggregate.load_experiments(uuid_list, db_root, dbid)

	Generator to load the results of the experiments.


	Parameters

	
	uuid_list (list [https://docs.python.org/3/library/stdtypes.html#list](uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID])) – List of UUIDs corresponding to experiments to load.


	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Root location for data store as requested by the serializer used.


	dbid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the data store as requested by the serializer used.






	Yields

	
	meta_data ((str, str, str)) – The meta_data contains a tuple of str with test_case, optimizer, uuid.


	data ((xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] list(float))) – The data contains a tuple of (perf_ds, time_ds, suggest_ds, sig). The perf_ds is a
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] containing the evaluation results with dimensions (ITER, SUGGEST), each
variable is an objective. The time_ds is an xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] containing the timing results of
the form accepted by summarize_time. The coordinates must be compatible with perf_ds. The suggest_ds is a
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] containing the inputs to the function evaluations. Each variable is a function
input. Finally, sig contains the test_case signature and must be list(float).













	
bayesmark.experiment_aggregate.summarize_time(all_time)

	Transform a single timing dataset from an experiment into a form better for aggregation.


	Parameters

	all_time (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – Dataset with variables (SUGGEST_PHASE, EVAL_PHASE, OBS_PHASE) which have dimensions (ITER,),
(ITER, SUGGEST), and (ITER,), respectively. The variable EVAL_PHASE has the function evaluation time
for each parallel suggestion.



	Returns

	time_summary – Dataset with variables (SUGGEST_PHASE, OBS_PHASE, EVAL_PHASE_MAX, EVAL_PHASE_SUM) which all have dimensions
(ITER,). The maximum EVAL_PHASE_MAX is relevant for wall clock time, while EVAL_PHASE_SUM is relevant
for CPU time.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.experiment_aggregate.validate_agg_perf(perf_da, min_trial=1)

	Validate the aggregated eval data set.






	
bayesmark.experiment_aggregate.validate_perf(perf_da)

	Validate the input eval data arrays.






	
bayesmark.experiment_aggregate.validate_time(all_time)

	Validate the aggregated time data set.








Experiment Analysis

Perform analysis to compare different optimizers across problems.


	
bayesmark.experiment_analysis.compute_aggregates(perf_da, baseline_ds, visible_perf_da=None)

	Aggregate function evaluations in the experiments to get performance summaries of each method.


	Parameters

	
	perf_da (xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – Aggregate experimental results with each function evaluation in the experiments according to true loss
(e.g., generalization). perf_da has dimensions (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL) as is assumed
to have no nan values.


	baseline_ds (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – Dataset with baseline performance. It was variables (PERF_MED, PERF_MEAN, PERF_CLIP, PERF_BEST) with
dimensions (ITER, TEST_CASE), (ITER, TEST_CASE), (TEST_CASE,), and (TEST_CASE,), respectively.
PERF_MED is a baseline of performance based on random search when using medians to summarize performance.
Likewise, PERF_MEAN is for means. PERF_CLIP is an upperbound to clip poor performance when using the mean.
PERF_BEST is an estimate on the global minimum.


	visible_perf_da (xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – Aggregate experimental results with each function evaluation in the experiments according to visible loss
(e.g., validation). visible_perf_da has dimensions (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL) as is
assumed to have no nan values. If None, we set visible_perf_da = perf_da.






	Returns

	
	agg_result (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – Dataset with summary of performance for each method and test case combination. Contains variables:
(PERF_MED, LB_MED, UB_MED, NORMED_MED, PERF_MEAN, LB_MEAN, UB_MEAN, NORMED_MEAN)
each with dimensions (ITER, METHOD, TEST_CASE). PERF_MED is a median summary of performance with LB_MED
and UB_MED as error bars. NORMED_MED is a rescaled PERF_MED so we expect the optimal performance is 0,
and random search gives 1 at all ITER. Likewise, PERF_MEAN, LB_MEAN, UB_MEAN, NORMED_MEAN are for
mean performance.


	summary (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – Dataset with overall summary of performance of each method. Contains variables
(PERF_MED, LB_MED, UB_MED, PERF_MEAN, LB_MEAN, UB_MEAN)
each with dimensions (ITER, METHOD).















	
bayesmark.experiment_analysis.get_perf_array(evals, evals_visible)

	Get the actual (e.g., generalization loss) over iterations.


	Parameters

	
	evals (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_iter, n_batch, n_trials)) – The actual loss (e.g., generalization) for a given experiment.


	evals_visible (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_iter, n_batch, n_trials)) – The observable loss (e.g., validation) for a given experiment.






	Returns

	perf_array – The best performance so far at iteration i from evals. Where the best has been selected according to
evals_visible.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_iter, n_trials)












Experiment Baseline

Build performance baselines from aggregate results to prepare analysis.


	
bayesmark.experiment_baseline.compute_baseline(perf_da)

	Compute a performance baseline of base and best performance from the aggregate experimental results.


	Parameters

	perf_da (xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – Aggregate experimental results with each function evaluation in the experiments. all_perf has dimensions
(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL) as is assumed to have no nan values.



	Returns

	baseline_ds – Dataset with baseline performance. It was variables (PERF_MED, PERF_MEAN, PERF_CLIP, PERF_BEST) with
dimensions (ITER, TEST_CASE), (ITER, TEST_CASE), (TEST_CASE,), and (TEST_CASE,), respectively.
PERF_MED is a baseline of performance based on random search when using medians to summarize performance.
Likewise, PERF_MEAN is for means. PERF_CLIP is an upperbound to clip poor performance when using the mean.
PERF_BEST is an estimate on the global minimum.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.experiment_baseline.validate(baseline_ds)

	Perform same tracks as will happen in analysis.








Experiment Launcher

Launch studies in separate studies or do dry run to build jobs file with lists of commands to run.


	
bayesmark.experiment_launcher.arg_safe_str(val)

	Cast value as str, raise error if not safe as argument to argparse.






	
bayesmark.experiment_launcher.dry_run(args, opt_file_lookup, run_uuid, fp, random=<mtrand.RandomState object>)

	Write to buffer description of commands for running all experiments.

This function is almost pure by writing to a buffer, but it could be switched to a generator.


	Parameters

	
	args (dict [https://docs.python.org/3/library/stdtypes.html#dict](CmdArgs, [int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]])) – Arguments of options to pass to the experiments being launched. The keys corresponds to the same arguments
passed to this program.


	opt_file_lookup (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])) – Mapping from method name to filename containing wrapper class for the method.


	run_uuid (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – UUID for this launcher run. Needed to generate different experiments UUIDs on each call. This function is
deterministic provided the same run_uuid.


	fp (writable buffer) – File handle to write out sequence of commands to execute (broken into jobs on each line) to execute all the
experiments (possibly each job in parallel).


	random (RandomState) – Random stream to use for reproducibility.













	
bayesmark.experiment_launcher.gen_commands(args, opt_file_lookup, run_uuid)

	Generator providing commands to launch processes for experiments.


	Parameters

	
	args (dict [https://docs.python.org/3/library/stdtypes.html#dict](CmdArgs, [int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]])) – Arguments of options to pass to the experiments being launched. The keys corresponds to the same arguments
passed to this program.


	opt_file_lookup (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])) – Mapping from method name to filename containing wrapper class for the method.


	run_uuid (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – UUID for this launcher run. Needed to generate different experiments UUIDs on each call. This function is
deterministic provided the same run_uuid.






	Yields

	
	iteration_key ((str, str, str, str)) – Tuple containing (trial, classifier, data, optimizer) to index the experiment.


	full_cmd (tuple(str)) – Strings containing command and arguments to run a process with experiment. Join with whitespace or use
util.shell_join() to get string with executable command. The command omits --opt-root which means it
will default to . if the command is executed. As such, the command assumes it is executed with
--opt-root as the working directory.













	
bayesmark.experiment_launcher.real_run(args, opt_file_lookup, run_uuid, timeout=None)

	Run sequence of independent experiments to fully run the benchmark.

This uses subprocess to launch a separate process (in serial) for each experiment.


	Parameters

	
	args (dict [https://docs.python.org/3/library/stdtypes.html#dict](CmdArgs, [int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]])) – Arguments of options to pass to the experiments being launched. The keys corresponds to the same arguments
passed to this program.


	opt_file_lookup (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])) – Mapping from method name to filename containing wrapper class for the method.


	run_uuid (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – UUID for this launcher run. Needed to generate different experiments UUIDs on each call. This function is
deterministic provided the same run_uuid.


	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Max seconds per experiment















Experiment

Perform a study.


	
bayesmark.experiment.build_eval_ds(function_evals, objective_names)

	Convert numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with function evaluations to xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

This function is a data cleanup routine after running an experiment, before serializing the data to end the study.


	Parameters

	
	function_evals (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls, n_suggestions, n_obj)) – Value of objective for each evaluation.


	objective_names (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str]) of shape (n_obj,)) – The names of each objective.






	Returns

	eval_ds – xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] containing one variable for each objective with the objective function
evaluations. It has dimensions (ITER, SUGGEST).



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.experiment.build_suggest_ds(suggest_log)

	Convert numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with function evaluation inputs to xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

This function is a data cleanup routine after running an experiment, before serializing the data to end the study.


	Parameters

	suggest_log (list [https://docs.python.org/3/library/stdtypes.html#list](list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])))) – Log of the suggestions. It has shape (n_call, n_suggest).



	Returns

	suggest_ds – xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] containing one variable for each input with the objective function evaluations.
It has dimensions (ITER, SUGGEST).



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.experiment.build_timing_ds(suggest_time, eval_time, observe_time)

	Convert numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] with timing evaluations to xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

This function is a data cleanup routine after running an experiment, before serializing the data to end the study.


	Parameters

	
	suggest_time (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls,)) – The time to make each (batch) suggestion.


	eval_time (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls, n_suggestions)) – The time for each evaluation of the objective function.


	observe_time (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls,)) – The time for each (batch) evaluation of the objective function, and the time to make an observe call.






	Returns

	time_ds – Dataset with variables (SUGGEST_PHASE, EVAL_PHASE, OBS_PHASE) which have dimensions (ITER,),
(ITER, SUGGEST), and (ITER,), respectively. The variable EVAL_PHASE has the function evaluation time
for each parallel suggestion.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.experiment.get_objective_signature(model_name, dataset, scorer, data_root=None)

	Get signature of an objective function specified by an sklearn model and dataset.

This routine specializes signatures.get_func_signature() for the sklearn study case.


	Parameters

	
	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which sklearn model we are attempting to tune, must be an element of constants.MODEL_NAMES.


	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data set the model is being tuned to, which must be either a) an element of
constants.DATA_LOADER_NAMES, or b) the name of a csv file in the data_root folder for a custom data set.


	scorer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which metric to use when evaluating the model. This must be an element of sklearn_funcs.SCORERS_CLF for
classification models, or sklearn_funcs.SCORERS_REG for regression models.


	data_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to folder containing custom data sets. This may be None if no custom data sets are used.``






	Returns

	signature – The signature of this test function.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])










	
bayesmark.experiment.load_optimizer_kwargs(optimizer_name, opt_root)

	Load the kwarg options for this optimizer being tested.

This is part of the general experiment setup before a study.


	Parameters

	
	optimizer_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the optimizer being tested. This optimizer name must be present in optimizer config file.


	opt_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to folder containing the config file.






	Returns

	kwargs – The kwargs setting to pass into the optimizer wrapper constructor.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])










	
bayesmark.experiment.main()

	This is where experiments happen. Usually called by the experiment launcher.






	
bayesmark.experiment.run_sklearn_study(opt_class, opt_kwargs, model_name, dataset, scorer, n_calls, n_suggestions, data_root=None, callback=None)

	Run a study for a single optimizer on a single sklearn model/data set combination.

This routine is meant for benchmarking when tuning sklearn models, as opposed to the more general
run_study().


	Parameters

	
	opt_class (abstract_optimizer.AbstractOptimizer) – Type of wrapper optimizer must be subclass of abstract_optimizer.AbstractOptimizer.


	opt_kwargs (kwargs) – kwargs to use when instantiating the wrapper class.


	model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which sklearn model we are attempting to tune, must be an element of constants.MODEL_NAMES.


	dataset (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which data set the model is being tuned to, which must be either a) an element of
constants.DATA_LOADER_NAMES, or b) the name of a csv file in the data_root folder for a custom data set.


	scorer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which metric to use when evaluating the model. This must be an element of sklearn_funcs.SCORERS_CLF for
classification models, or sklearn_funcs.SCORERS_REG for regression models.


	n_calls (int [https://docs.python.org/3/library/functions.html#int]) – How many iterations of minimization to run.


	n_suggestions (int [https://docs.python.org/3/library/functions.html#int]) – How many parallel evaluation we run each iteration. Must be >= 1.


	data_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to folder containing custom data sets. This may be None if no custom data sets are used.``


	callback (callable) – Optional callback taking the current best function evaluation, and the number of iterations finished. Takes
array of shape (n_obj,).






	Returns

	
	function_evals (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls, n_suggestions, n_obj)) – Value of objective for each evaluation.


	timing_evals ((numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray])) – Tuple of 3 timing results: (suggest_time, eval_time, observe_time) with shapes (n_calls,),
(n_calls, n_suggestions), and (n_calls,). These are the time to make each suggestion, the time for each
evaluation of the objective function, and the time to make an observe call.


	suggest_log (list(list(dict(str, object)))) – Log of the suggestions corresponding to the function_evals.















	
bayesmark.experiment.run_study(optimizer, test_problem, n_calls, n_suggestions, n_obj=1, callback=None)

	Run a study for a single optimizer on a single test problem.

This function can be used for benchmarking on general stateless objectives (not just sklearn).


	Parameters

	
	optimizer (abstract_optimizer.AbstractOptimizer) – Instance of one of the wrapper optimizers.


	test_problem (sklearn_funcs.TestFunction) – Instance of test function to attempt to minimize.


	n_calls (int [https://docs.python.org/3/library/functions.html#int]) – How many iterations of minimization to run.


	n_suggestions (int [https://docs.python.org/3/library/functions.html#int]) – How many parallel evaluation we run each iteration. Must be >= 1.


	n_obj (int [https://docs.python.org/3/library/functions.html#int]) – Number of different objectives measured, only objective 0 is seen by optimizer. Must be >= 1.


	callback (callable) – Optional callback taking the current best function evaluation, and the number of iterations finished. Takes
array of shape (n_obj,).






	Returns

	
	function_evals (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_calls, n_suggestions, n_obj)) – Value of objective for each evaluation.


	timing_evals ((numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray])) – Tuple of 3 timing results: (suggest_time, eval_time, observe_time) with shapes (n_calls,),
(n_calls, n_suggestions), and (n_calls,). These are the time to make each suggestion, the time for each
evaluation of the objective function, and the time to make an observe call.


	suggest_log (list(list(dict(str, object)))) – Log of the suggestions corresponding to the function_evals.

















Function Signatures

Routines to compute and compare the “signatures” of objective functions. These are useful to make sure two different
studies were actually optimizing the same objective function (even if they say the same test case in the meta-data).


	
bayesmark.signatures.analyze_signature_pair(signatures, signatures_ref)

	Analyze a pair of signatures (often from two sets of experiments) and return the error between them.


	Parameters

	
	signatures (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list](float [https://docs.python.org/3/library/functions.html#float]))) – Signatures from set of experiments. The signatures must all be the same length, so it should be 2D array like.


	signatures_ref (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list](float [https://docs.python.org/3/library/functions.html#float]))) – The signatures from a reference set of experiments. The keys in signatures must be a subset of the signatures
in signatures_ref.






	Returns

	
	sig_errs (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – rows are test cases, columns are test points.


	signatures_median (dict(str, list(float))) – Median signature across all repetition per test case.















	
bayesmark.signatures.analyze_signatures(signatures)

	Analyze function signatures from the experiment.


	Parameters

	signatures (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list](list [https://docs.python.org/3/library/stdtypes.html#list](float [https://docs.python.org/3/library/functions.html#float])))) – The signatures should all be the same length, so it should be 2D array
like.



	Returns

	
	sig_errs (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – rows are test cases, columns are test points.


	signatures_median (dict(str, list(float))) – Median signature across all repetition per test case.















	
bayesmark.signatures.get_func_signature(f, api_config)

	Get the function signature for an objective function in an experiment.


	Parameters

	
	f (typing.Callable) – The objective function we want to compute the signature of. This function must take inputs in the form of
dict(str, object) with one dictionary key per variable, and provide float as the output.


	api_config (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict])) – Configuration of the optimization variables. See API description.






	Returns

	
	signature_x (list(dict(str, object)) of shape (n_suggest,)) – The input locations probed on signature call.


	signature_y (list(float) of shape (n_suggest,)) – The objective function values at the inputs points. This is the real signature.

















Numpy Util

Utilities to that could be included in numpy but aren’t.


	
bayesmark.np_util.argmin_2d(X)

	Take the arg minimum of a 2D array.






	
bayesmark.np_util.clip_chk(x, lb, ub, allow_nan=False)

	Clip all element of x to be between lb and ub like numpy.clip() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.clip.html#numpy.clip], but also check
numpy.isclose() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.isclose.html#numpy.isclose].

Shapes of all input variables must be broadcast compatible.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array containing elements to clip.


	lb (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Lower limit in clip.


	ub (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Upper limit in clip.


	allow_nan (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, we allow nan to be present in x without out raising an error.






	Returns

	x – An array with the elements of x, but where values < lb are replaced with lb, and those > ub with ub.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
bayesmark.np_util.cummin(x_val, x_key)

	Get the cumulative minimum of x_val when ranked according to x_key.


	Parameters

	
	x_val (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, d)) – The array to get the cumulative minimum of along axis 0.


	x_key (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, d)) – The array for ranking elements as to what is the minimum.






	Returns

	c_min – The cumulative minimum array.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, d)










	
bayesmark.np_util.isclose_lte(x, y)

	Check that less than or equal to (lte, x <= y) is approximately true between all elements of x and y.

This is similar to numpy.allclose() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.allclose.html#numpy.allclose] for equality. Shapes of all input variables must be broadcast
compatible.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Lower limit in <= check.


	y (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Upper limit in <= check.






	Returns

	lte – True if x <= y is approximately true element-wise.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
bayesmark.np_util.linear_rescale(X, lb0, ub0, lb1, ub1, enforce_bounds=True)

	Linearly transform all elements of X, bounded between lb0 and ub0, to be between lb1 and ub1.

Shapes of all input variables must be broadcast compatible.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array containing elements to rescale.


	lb0 (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Current lower bound of X.


	ub0 (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Current upper bound of X.


	lb1 (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Desired lower bound of X.


	ub1 (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Desired upper bound of X.


	enforce_bounds (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perform input bounds check (and clipping if slight violation) on the input X and again on the
output. This argument is not meant to be vectorized like the other input variables.






	Returns

	X – Elements of input X after linear rescaling.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
bayesmark.np_util.random_seed(random=<mtrand.RandomState object>)

	Draw a random seed compatible with numpy.random.RandomState [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState].


	Parameters

	random (numpy.random.RandomState [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) – Random stream to use to draw the random seed.



	Returns

	seed – Seed for a new random stream in [0, 2**32-1).



	Return type

	int [https://docs.python.org/3/library/functions.html#int]










	
bayesmark.np_util.shuffle_2d(X, random=<mtrand.RandomState object>)

	Generalization of numpy.random.shuffle() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.shuffle.html#numpy.random.shuffle] of 2D array.

Performs in-place shuffling of X. So, it has no return value.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, m)) – Array-like 2D data to shuffle in place. Shuffles order of rows and order of elements within a row.


	random (numpy.random.RandomState [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) – Random stream to use to draw the random seed.













	
bayesmark.np_util.snap_to(x, fixed_val=None)

	Snap input x to the fixed_val unless fixed_val is None, where x is returned.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Array containing elements to snap.


	fixed_val (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] or None) – Values to be returned if x is close, otherwise an error is raised. If fixed_val is None, x is returned.






	Returns

	fixed_val – Snapped to value of x.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
bayesmark.np_util.strat_split(X, n_splits, inplace=False, random=<mtrand.RandomState object>)

	Make a stratified random split of items.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, m)) – Data we would like to split randomly into groups. We should get the same number +/-1 of elements from each row
in each group.


	n_splits (int [https://docs.python.org/3/library/functions.html#int]) – How many groups we want to split into.


	inplace (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, this function will cause in place modifications to X.


	random (numpy.random.RandomState [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) – Random stream to use for reproducibility.






	Returns

	Y – Stratified split of X where each row of Y contains the same number +/-1 of elements from each row of X.
Must be a list of arrays since each row may have a different length.



	Return type

	list(numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray])












Path Util

Utilities handy for manipulating paths that have extra checks not included in os.path.


	
bayesmark.path_util.absopen(path, mode)

	Safe version of the built in open() [https://docs.python.org/3/library/functions.html#open] that only opens absolute paths.


	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path. An assertion failure is raised if it is not absolute.


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Open mode, any mode understood by the built in open() [https://docs.python.org/3/library/functions.html#open], e.g., "r" or "w".






	Returns

	f – File handle open to use.



	Return type

	file handle










	
bayesmark.path_util.abspath(path, verify=True)

	Combo of os.path.abspath() [https://docs.python.org/3/library/os.path.html#os.path.abspath] and os.path.expanduser() [https://docs.python.org/3/library/os.path.html#os.path.expanduser] that will also check existence of directory.


	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Relative path string that can also contain home directories, e.g., "~/git/".


	verify (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, verifies that the directory exists. Raises an assertion failure if it does not exist.






	Returns

	path – Absolute version of input path.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
bayesmark.path_util.join_safe_r(*args)

	Safe version of os.path.join() [https://docs.python.org/3/library/os.path.html#os.path.join] that checks resulting path is absolute and the file exists for reading.


	Parameters

	*args (str [https://docs.python.org/3/library/stdtypes.html#str]) – varargs for parts of path to combine. The last argument must be a file name.



	Returns

	fname – Absolute path to filename.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
bayesmark.path_util.join_safe_w(*args)

	Safe version of os.path.join() [https://docs.python.org/3/library/os.path.html#os.path.join] that checks resulting path is absolute.

Because this routine is for writing, if the file already exists, a warning is raised.


	Parameters

	*args (str [https://docs.python.org/3/library/stdtypes.html#str]) – varargs for parts of path to combine. The last argument must be a file name.



	Returns

	fname – Absolute path to filename.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]












Quantile Estimation

Compute quantiles and confidence intervals.


	
bayesmark.quantiles.max_quantile_CI(X, q, m, alpha=0.05)

	Calculate CI on q quantile of distribution on max of m iid samples using a data set X.

This uses nonparametric estimation from order statistics and will have alpha level of at most alpha due to the
discrete nature of order statistics.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for quantile estimation. Can be vectorized. Must be sortable data type (which is almost everything).


	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, must be in (0, 1). Can be vectorized.


	m (int [https://docs.python.org/3/library/functions.html#int]) – Compute statistics for distribution on max over m samples. Must be >= 1. Can be vectorized.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – False positive rate we allow for CI, must be in (0, 1). Can be vectorized.






	Returns

	
	estimate (dtype of X, scalar) – Best estimate on q quantile on max over m iid samples.


	LB (dtype of X, scalar) – Lower end on CI


	UB (dtype of X, scalar) – Upper end on CI















	
bayesmark.quantiles.min_quantile_CI(X, q, m, alpha=0.05)

	Calculate confidence interval on q quantile of distribution on min of m iid samples using a data set X.

This uses nonparametric estimation from order statistics and will have alpha level of at most alpha due to the
discrete nature of order statistics.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for quantile estimation. Can be vectorized. Must be sortable data type (which is almost everything).


	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, must be in (0, 1). Can be vectorized.


	m (int [https://docs.python.org/3/library/functions.html#int]) – Compute statistics for distribution on min over m samples. Must be >= 1. Can be vectorized.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – False positive rate we allow for CI, must be in (0, 1). Can be vectorized.






	Returns

	
	estimate (dtype of X, scalar) – Best estimate on q quantile on min over m iid samples.


	LB (dtype of X, scalar) – Lower end on CI


	UB (dtype of X, scalar) – Upper end on CI















	
bayesmark.quantiles.order_stats(X)

	Compute order statistics on sample X.

Follows convention that order statistic 1 is minimum and statistic n is maximum. Therefore, array elements 0
and n+1 are -inf and +inf.


	Parameters

	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for order statistics. Can be vectorized. Must be sortable data type (which is almost everything).



	Returns

	o_stats – Order statistics on X.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n+2,)










	
bayesmark.quantiles.quantile(X, q)

	Computes q th quantile of X.

Similar to numpy.percentile() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.percentile.html#numpy.percentile] except that it matches the mathematical definition of a quantile and
q is scaled in (0,1) rather than (0,100).


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for quantile estimation. Can be vectorized. Must be sortable data type (which is almost everything).


	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, must be in (0, 1). Can be vectorized.






	Returns

	estimate – Empirical q quantile from sample X.



	Return type

	dtype of X, scalar










	
bayesmark.quantiles.quantile_CI(X, q, alpha=0.05)

	Calculate CI on q quantile from same X using nonparametric estimation from order statistics.

This will have alpha level of at most alpha due to the discrete nature of order statistics.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for quantile estimation. Can be vectorized. Must be sortable data type (which is almost everything).


	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, must be in (0, 1). Can be vectorized.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – False positive rate we allow for CI, must be in (0, 1). Can be vectorized.






	Returns

	
	LB (dtype of X, scalar) – Lower end on CI


	UB (dtype of X, scalar) – Upper end on CI















	
bayesmark.quantiles.quantile_and_CI(X, q, alpha=0.05)

	Calculate CI on q quantile from same X using nonparametric estimation from order statistics.

This will have alpha level of at most alpha due to the discrete nature of order statistics.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Data for quantile estimation. Can be vectorized. Must be sortable data type (which is almost everything).


	q (float [https://docs.python.org/3/library/functions.html#float]) – Quantile to compute, must be in (0, 1). Can be vectorized.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – False positive rate we allow for CI, must be in (0, 1). Can be vectorized.






	Returns

	
	estimate (dtype of X, scalar) – Empirical q quantile from sample X.


	LB (dtype of X, scalar) – Lower end on CI


	UB (dtype of X, scalar) – Upper end on CI

















Random Search

A baseline random search in our standardized optimizer interface. Useful for baselines.


	
bayesmark.random_search.suggest_dict(X, y, meta, n_suggestions=1, random=<mtrand.RandomState object>)

	Stateless function to create suggestions for next query point in random search optimization.

This implements the API for general structures of different data types.


	Parameters

	
	X (list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict])) – Places where the objective function has already been evaluated. Not actually used in random search.


	y (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray], shape (n,)) – Corresponding values where objective has been evaluated. Not actually used in random search.


	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict])) – Configuration of the optimization variables. See API description.


	n_suggestions (int [https://docs.python.org/3/library/functions.html#int]) – Desired number of parallel suggestions in the output


	random (numpy.random.RandomState [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.random.RandomState.html#numpy.random.RandomState]) – Optionally pass in random stream for reproducibility.






	Returns

	next_guess – List of n_suggestions suggestions to evaluate the objective function.
Each suggestion is a dictionary where each key corresponds to a parameter being optimized.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict])












Serialization

A serialization abstraction layer (SAL) to save and load experimental results. All IO of experimental results should
go through this module. This makes changing the backend (between different databases) transparent to the benchmark code.


	
class bayesmark.serialize.XRSerializer

	Serialization layer when saving and loading xarray datasets (currently) as json.


	
get_derived_keys(db)

	List the derived keys currently available in the database.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.






	Returns

	keys – The variable names (or keys) in the database for derived data.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])










	
get_keys(db)

	List the non-derived keys available in the database.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.






	Returns

	keys – The variable names (or keys) in the database for non-derived data.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])










	
get_uuids(db, key)

	List the UUIDs for the versions of a variable (non-derived key) available in the database.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	keys (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name in the database for non-derived data.






	Returns

	uuids – The UUIDs for the versions of this key.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID])










	
init_db(keys, db=None, exist_ok=True)

	Initialize a “database” for storing data at the specified location.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	keys (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – The variable names (or keys) we will store in the database for non-derived data.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database. If None, a non-conflicting name will be generated.


	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, do not raise an error if this database already exists.






	Returns

	db – The name of the database.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
init_db_manual(keys, db)

	Instruction for how one would manually initialize the “database” on another system.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	keys (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – The variable names (or keys) we will store in the database for non-derived data.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.






	Returns

	manual_setup_info – The setup instructions.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
load(db, key, uuid_)

	Load a dataset under a key name in the database. This is the inverse of save().


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name in the database for the data.


	uuid_ (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – The UUID to represent the version of this variable we want to load.






	Returns

	
	data (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – An xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] variable for the non-derived data from an experiment.


	meta (json-serializable) – Associated meta-data with the experiment. This can be anything json serializable.















	
load_derived(db, key)

	Load a dataset under a key name in the database as derived data. This is the inverse of save_derived().


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name in the database for the data.






	Returns

	
	data (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – An xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] variable for the derived data from experiments.


	meta (json-serializable) – Associated meta-data with the experiments. This can be anything json serializable.















	
logging_path(db, uuid_)

	Get an absolute path for logging from an experiment given its UUID.


	Parameters

	
	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	uuid_ (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – The UUID to represent this experiment.






	Returns

	logfile – Absolute path suitable for logging in this experiment.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
save(meta, db_root, db, key, uuid_)

	Save a dataset under a key name in the database.


	Parameters

	
	data (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – An xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] variable we would like to store as non-derived data from an experiment.


	meta (json-serializable) – Associated meta-data with the experiment. This can be anything json serializable.


	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name in the database for the data.


	uuid_ (uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]) – The UUID to represent the version of this variable we are storing.













	
save_derived(meta, db_root, db, key)

	Save a dataset under a key name in the database as derived data.


	Parameters

	
	data (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – An xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] variable we would like to store as derived data from experiments.


	meta (json-serializable) – Associated meta-data with the experiments. This can be anything json serializable.


	db_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path to the database.


	db (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database.


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name in the database for the data.



















Sklearn Tuning

Routines to build a standardized interface to make sklearn hyper-parameter tuning problems look like an objective
function.

This file mostly contains a dictionary collection of all sklearn test funcs.

The format of each element in MODELS is:
model_name: (model_class, fixed_param_dict, search_param_api_dict)
model_name is an arbitrary name to refer to a certain strategy.
At usage time, the optimizer instance is created using:
model_class(**kwarg_dict)
The kwarg dict is fixed_param_dict + search_param_dict. The
search_param_dict comes from a optimizer which is configured using the
search_param_api_dict. See the API description for information on setting up
the search_param_api_dict.


	
class bayesmark.sklearn_funcs.SklearnModel(model, dataset, metric, shuffle_seed=0, data_root=None)

	Test class for sklearn classifier/regressor CV score objective functions.


	
evaluate(params)

	Evaluate the sklearn CV objective at a particular parameter setting.


	Parameters

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])) – The varying (non-fixed) parameter dict to the sklearn model.



	Returns

	cv_loss – Average loss over CV splits for sklearn model when tested using the settings in params.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
static inverse_test_case_str(test_case)

	Inverse of test_case_str.






	
static test_case_str(model, dataset, scorer)

	Generate the combined test case string from model, dataset, and scorer combination.










	
class bayesmark.sklearn_funcs.SklearnSurrogate(model, dataset, scorer, path)

	Test class for sklearn classifier/regressor CV score objective function surrogates.


	
evaluate(params)

	Evaluate the sklearn CV objective at a particular parameter setting.


	Parameters

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])) – The varying (non-fixed) parameter dict to the sklearn model.



	Returns

	overall_loss – Average loss over CV splits for sklearn model when tested using the settings in params.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]














	
class bayesmark.sklearn_funcs.TestFunction

	Abstract base class for test functions in the benchmark. These do not need to be ML hyper-parameter tuning.


	
abstract evaluate(params)

	Abstract method to evaluate the function at a parameter setting.






	
get_api_config()

	Get the API config for this test problem.


	Returns

	api_config – The API config for the used model. See README for API description.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]))
















Space

Do the conversion of search spaces into a normalized cartesian space.


	
class bayesmark.space.Boolean(warp=None, values=None, range_=None)

	Space for transforming Boolean variables to continuous normalized space.






	
class bayesmark.space.Categorical(warp=None, values=None, range_=None)

	Space for transforming categorical variables to continuous normalized space.


	
unwarp(X_w)

	Inverse of warp function.


	Parameters

	X_w (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, m)) – Warped version of input space. The warped space has a one-hot encoding and therefore m is the number of
possible values in the space. X_w will have a float type. Non-zero/one values are allowed in X_w.
The maximal element in the vector is taken as the encoded value.



	Returns

	X – Unwarped version of X_w. X will have same type code as the Categorical class, which is
unicode ('U').



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)










	
warp(X)

	Warp inputs to a continuous space.


	Parameters

	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)) – Input variables to warp. This is vectorized to work in any dimension, but it must have the same
type code as the class, which is unicode ('U') for the Categorical space.



	Returns

	X_w – Warped version of input space. By convention there is an extra dimension on warped array. The warped space
has a one-hot encoding and therefore m is the number of possible values in the space. X_w will have
a float type.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, m)














	
class bayesmark.space.Integer(warp='linear', values=None, range_=None)

	Space for transforming integer variables to continuous normalized space.






	
class bayesmark.space.JointSpace(meta)

	Combination of multiple Space objectives to transform multiple variables at the same time (jointly).


	
get_bounds()

	Get bounds of the warped joint space.


	Returns

	bounds – Bounds in the warped space. First column is the lower bound and the second column is the upper bound.
bounds.tolist() gives the bounds in the standard form expected by scipy optimizers:
[(lower_1, upper_1), ..., (lower_n, upper_n)].



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (m, 2)










	
grid(max_interp=8)

	Return grid spanning the original (unwarped) space.


	Parameters

	max_interp (int [https://docs.python.org/3/library/functions.html#int]) – The number of points to use in grid space when a range and not values are used to define the space.
Must be >= 0.



	Returns

	axes – Grids spanning the original spaces of each variable. For each variable, this is simply self.values
if a grid has already been specified, otherwise it is just grid across the range.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list])










	
unwarp(X_w, fixed_vals={})

	Inverse of warp().


	Parameters

	
	X_w (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, m)) – Warped version of input space. Must be 2D float numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray]. n is the number of
separate points in the warped joint space. m is the size of the joint warped space, which can be inferred
in advance by calling get_bounds().


	fixed_vals (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Subset of variables we want to keep fixed in X. Unwarp checks that the unwarped version of X_w matches
fixed_vals up to numerical error. Otherwise, an error is raised.






	Returns

	X – List of n points in the joint space to warp. Each list element is a dictionary where each key corresponds
to a variable in the joint space.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])) of shape (n,)










	
validate(X)

	Raise ValueError if X does not match the format expected for a
joint space.






	
warp(X)

	Warp inputs to a continuous space.


	Parameters

	X (list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict](str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object])) of shape (n,)) – List of n points in the joint space to warp. Each list element is a dictionary where each key corresponds
to a variable in the joint space. Keys can be be missing in the records and the according warped variables
will be nan.



	Returns

	X_w – Warped version of input space. Result is 2D float np array. n is the number of input points, length
of X. m is the size of the joint warped space, which can be inferred by calling get_bounds().



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, m)














	
class bayesmark.space.Real(warp='linear', values=None, range_=None)

	Space for transforming real variables to normalized space (after warping).






	
class bayesmark.space.Space(dtype, default_round, warp='linear', values=None, range_=None)

	Base class for all types of variables.


	
get_bounds()

	Get bounds of the warped space.


	Returns

	bounds – Bounds in the warped space. First column is the lower bound and the second column is the upper bound.
Calling bounds.tolist() gives the bounds in the standard form expected by scipy optimizers:
[(lower_1, upper_1), ..., (lower_n, upper_n)].



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (D, 2)










	
grid(max_interp=8)

	Return grid spanning the original (unwarped) space.


	Parameters

	max_interp (int [https://docs.python.org/3/library/functions.html#int]) – The number of points to use in grid space when a range and not values are used to define the space.
Must be >= 0.



	Returns

	values – Grid spanning the original space. This is simply self.values if a grid has already been specified,
otherwise it is just grid across the range.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]










	
unwarp(X_w)

	Inverse of warp function.


	Parameters

	X_w (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, m)) – Warped version of input space. This is vectorized to work in any dimension. But, by convention, there is an
extra dimension on the warped array. Currently, the last dimension m=1 for all warpers. X_w must be of
a float type.



	Returns

	X – Unwarped version of X_w. X will have the same type code as the class, which is in self.type_code.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)










	
validate(X, pre=False)

	Routine to validate inputs to warp.

This routine does not perform any checking on the dimensionality of X and is fully vectorized.






	
validate_warped(X, pre=False)

	Routine to validate inputs to unwarp. This routine is vectorized, but X must have at least 1-dimension.






	
warp(X)

	Warp inputs to a continuous space.


	Parameters

	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)) – Input variables to warp. This is vectorized to work in any dimension, but it must have the same type code
as the class, which is in self.type_code.



	Returns

	X_w – Warped version of input space. By convention there is an extra dimension on warped array.
Currently, m=1 for all warpers. X_w will have a float type.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, m)














	
bayesmark.space.biexp(x)

	Inverse of bilog() function.


	Parameters

	x (scalar) – Input variable in linear space. Can be any numeric type and is vectorizable.



	Returns

	y – The biexp of x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
bayesmark.space.bilog(x)

	Bilog warping function. Extension of log to work with negative numbers.

Bilog(x) ~= log(x) for large x or -log(abs(x)) if x is negative. However, the bias term ensures good
behavior near 0 and bilog(0) = 0.


	Parameters

	x (scalar) – Input variable in linear space. Can be any numeric type and is vectorizable.



	Returns

	y – The bilog of x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]










	
bayesmark.space.decode(Y, labels, assume_sorted=False)

	Perform inverse of one-hot encoder encode.


	Parameters

	
	Y (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, n)) – One-hot encoding of categorical data X. Extra dimension is appended at end for the one-hot vector. Maximum
element is taken if there is more than one non-zero entry in one-hot vector.


	labels (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Complete list of all possible labels. List is flattened if it is not already 1-dimensional.


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, assume labels is already sorted and unique. This saves the computational cost of calling
numpy.unique() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.unique.html#numpy.unique].






	Returns

	X – Categorical values corresponding to one-hot encoded Y.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)










	
bayesmark.space.encode(X, labels, assume_sorted=False, dtype=<class 'bool'>, assume_valid=False)

	Perform one hot encoding of categorical data in numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] variable X of any dimension.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…)) – Categorical values of any standard type. Vectorized to work for any dimensional X.


	labels (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,)) – Complete list of all possible labels. List is flattened if it is not already 1 dimensional.


	assume_sorted (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, assume labels is already sorted and unique. This saves the computational cost of calling
numpy.unique() [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.unique.html#numpy.unique].


	dtype (type [https://docs.python.org/3/library/functions.html#type]) – Desired data of feature array. One-hot is most logically bool, but feature matrices are usually float.


	assume_valid (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, assume all element of X are in the list labels. This saves the computational cost of verifying
X are in labels. If true and a non-label X occurs this routine will silently give bogus result.






	Returns

	Y – One-hot encoding of X. Extra dimension is appended at end for the one-hot vector. It has data type dtype.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (…, n)










	
bayesmark.space.identity(x)

	Helper function that perform warping in linear space. Sort of a no-op.


	Parameters

	x (scalar) – Input variable in linear space. Can be any numeric type and is vectorizable.



	Returns

	y – Same as input x.



	Return type

	scalar












Stats

General statistic tools useful in the benchmark.


	
bayesmark.stats.robust_standardize(X, q_level=0.5)

	Perform robust standardization of data matrix X over axis 0.

Similar to sklearn.preprocessing.robust_scale() [https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.robust_scale.html#sklearn.preprocessing.robust_scale] except also does a Gaussian
adjustment rescaling so that if Gaussian data is passed in the transformed
data will, in large n, be distributed as N(0,1). See sklearn feature
request #10139 on github.


	Parameters

	
	X (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, …)) – Array containing elements standardize. Require n >= 2.


	q_level (scalar) – Must be in [0, 1]. Inter-quartile range to use for scale estimation.






	Returns

	X – Elements of input X standardization.



	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n, …)










	
bayesmark.stats.t_EB(x, alpha=0.05, axis=-1)

	Get t-statistic based error bars on mean of x.


	Parameters

	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy-1.16.1/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n_samples,)) – Data points to estimate mean. Must not be empty or contain NaN.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The alpha level (1-confidence) probability (in (0, 1)) to construct confidence interval from t-statistic.


	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis on x where we compute the t-statistics. The function is vectorized over all other dimensions.






	Returns

	EB – Size of error bar on mean (>= 0). The confidence interval is [mean(x) - EB, mean(x) + EB]. EB is
inf when len(x) <= 1. Will be NaN if there are any infinite values in x.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]












Util (General)

General utilities that should arguably be included in Python.


	
bayesmark.util.all_unique(L)

	Check if all elements in a list are unique.


	Parameters

	L (list [https://docs.python.org/3/library/stdtypes.html#list]) – List we would like to check for uniqueness.



	Returns

	uniq – True if all elements in L are unique.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
bayesmark.util.chomp(str_val, ext='\n')

	Chomp a suffix off a string.


	Parameters

	
	str_val (str [https://docs.python.org/3/library/stdtypes.html#str]) – String we want to chomp off a suffix, e.g., "foo.log", and we want to chomp the file extension.


	ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – The suffix we want to chomp. An error is raised if str_val doesn’t end in ext.






	Returns

	chomped – Version of str_val with ext removed from the end.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
bayesmark.util.in_or_none(x, L)

	Check if item is in list of list is None.






	
bayesmark.util.preimage_func(f, x)

	Pre-image a funcation at a set of input points.


	Parameters

	
	f (typing.Callable) – The function we would like to pre-image. The output type must be hashable.


	x (typing.Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable]) – Input points we would like to evaluate f. x must be of a type acceptable by f.






	Returns

	D – This dictionary maps the output of f to the list of x values that produce it.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict](object [https://docs.python.org/3/library/functions.html#object], list [https://docs.python.org/3/library/stdtypes.html#list](object [https://docs.python.org/3/library/functions.html#object]))










	
bayesmark.util.range_str(stop)

	Version of range(stop) that instead returns strings that are zero padded so the entire iteration is of the
same length.


	Parameters

	stop (int [https://docs.python.org/3/library/functions.html#int]) – Stop value equivalent to range(stop).



	Yields

	x (str) – String representation of integer zero padded so all items from this generator have the same len(x).










	
bayesmark.util.shell_join(argv, delim=' ')

	Join strings together in a way that is an inverse of shlex shell parsing into argv.

Basically, if the resulting string is passed as a command line argument then sys.argv will equal argv.


	Parameters

	
	argv (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – List of arguments to collect into command line string. It will be escaped accordingly.


	delim (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whitespace delimiter to join the strings.






	Returns

	cmd – Properly escaped and joined command line string.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
bayesmark.util.str_join_safe(delim, str_vec, append=False)

	Version of str.join that is guaranteed to be invertible.


	Parameters

	
	delim (str [https://docs.python.org/3/library/stdtypes.html#str]) – Delimiter to join the strings.


	str_vec (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – List of strings to join. A ValueError is raised if delim is present in any of these strings.


	append (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, assume the first element is already joined and we are appending to it. So, str_vec[0] can contain
delim.






	Returns

	joined_str – Joined version of str_vec, which is always recoverable with joined_str.split(delim).



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





Examples

Append is required because,

ss = str_join_safe('_', ('foo', 'bar'))
str_join_safe('_', (ss, 'baz', 'qux'))





would fail because we are appending 'baz' and 'qux' to the already joined string ss = 'foo_bar'.

In this case, we use

ss = str_join_safe('_', ('foo', 'bar'))
str_join_safe('_', (ss, 'baz', 'qux'), append=True)










	
bayesmark.util.strict_sorted(L)

	Return a strictly sorted version of L. Therefore, this raises an error if L contains duplicates.


	Parameters

	L (list [https://docs.python.org/3/library/stdtypes.html#list]) – List we would like to sort.



	Returns

	S – Strictly sorted version of L.



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]












Xarray Util

General utilities for xarray that should be included in xarray.


	
bayesmark.xr_util.coord_compat(da_seq, dims)

	Check if a sequence of xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] have compatible coordinates.


	Parameters

	
	da_seq (list(xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray])) – Sequence of xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] we would like to check for compatibility.
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] work too.


	dims (list [https://docs.python.org/3/library/stdtypes.html#list]) – Subset of all dimensions in the xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] we are concerned with for compatibility.






	Returns

	compat – True if all the xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] have compatible coordinates.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
bayesmark.xr_util.da_concat(da_dict, dims)

	Concatenate a dictionary of xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] similar to pandas.concat() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat].


	Parameters

	
	da_dict (dict(tuple(str), xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray])) – Dictionary of xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] to combine. The keys are tuples of index values. The
xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] must have compatible coordinates.


	dims (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – The names of the new dimensions we create for the dictionary keys. This must be of the same length as the
key tuples in da_dict.






	Returns

	da – Combined data array. The new dimensions will be input_da.dims + dims.



	Return type

	xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]










	
bayesmark.xr_util.da_to_string(da)

	Generate a human readable version of a 1D xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray].


	Parameters

	da (xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] to display. Must only have one dimension.



	Returns

	str_val – String with human readable version of da.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
bayesmark.xr_util.ds_concat(ds_dict, dims)

	Concatenate a dictionary of xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] similar to pandas.concat() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat], and a
generalization of da_concat().


	Parameters

	
	ds_dict (dict(tuple(str), xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray])) – Dictionary of xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] to combine. The keys are tuples of index values. The
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] must have compatible coordinates, and all have the same variables.


	dims (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – The names of the new dimensions we create for the dictionary keys. This must be of the same length as the
key tuples in ds_dict.






	Returns

	ds – Combined dataset. For each variable var, the new dimensions will be input_ds[var].dims + dims.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.xr_util.ds_like(ref, vars_, dims, fill=nan)

	Produce a blank xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] copying some coordinates from another
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset].


	Parameters

	
	ref (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – The reference dataset we want to copy coordinates from.


	vars_ (typing.Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable]) – List of variable names we want in the new dataset.


	dims (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of dimensions we want to copy over from ref. These are the dimensions of the output.


	fill (scalar) – Scalar value to fill the blank dataset. The dtype will be determined from the fill value.






	Returns

	ds – A new dataset with variables vars_ and dimensions dims where the coordinates have been copied from ref.
All values are filled with fill.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.xr_util.ds_like_mixed(ref, vars_, dims, fill=nan)

	The same as ds_like but allow different dimensions for each variable.


	Parameters

	
	ref (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – The reference dataset we want to copy coordinates from.


	vars_ (typing.Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable]) – List of (variable names, dimension) pairs we want in the new dataset. The dimensions for each variable must be
a subset of dims.


	dims (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of all dimensions we want to copy over from ref.


	fill (scalar) – Scalar value to fill the blank dataset. The dtype will be determined from the fill value.






	Returns

	ds – A new dataset with variables vars_ and dimensions dims where the coordinates have been copied from ref.
All values are filled with fill.



	Return type

	xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]










	
bayesmark.xr_util.is_simple_coords(coords, min_side=0, dims=None)

	Check if all xr coordinates are “simple”. That is, equals to np.arange(n).


	Parameters

	
	coords (dict-like of coordinates) – The coordinates we would like to check, e.g. from DataArray.coords.


	min_side (int [https://docs.python.org/3/library/functions.html#int]) – The minimum side requirement. We can set this min_side=1 and have empty coordinates result in a return
value of False.


	dims (None [https://docs.python.org/3/library/constants.html#None] or list of dimension names) – Dimensions we want to check for simplicity. If None, check all dimensions.






	Returns

	simple – True when all coordinates are simple.



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]










	
bayesmark.xr_util.only_dataarray(ds)

	Convert a xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] to a xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]. If the
xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] has more than one variable, an error is raised.


	Parameters

	ds (xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) – xarray.Dataset [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] we would like to convert to a xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]. This must
contain only one variable.



	Returns

	da – The xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] extracted from ds.



	Return type

	xarray.DataArray [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray]
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